3.2.9 \(\int \sec ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\) [109]

3.2.9.1 Optimal result
3.2.9.2 Mathematica [A] (verified)
3.2.9.3 Rubi [A] (verified)
3.2.9.4 Maple [A] (verified)
3.2.9.5 Fricas [A] (verification not implemented)
3.2.9.6 Sympy [F]
3.2.9.7 Maxima [F]
3.2.9.8 Giac [F]
3.2.9.9 Mupad [B] (verification not implemented)

3.2.9.1 Optimal result

Integrand size = 23, antiderivative size = 116 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {64 a^3 \tan (c+d x)}{21 d \sqrt {a+a \sec (c+d x)}}+\frac {16 a^2 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{21 d}+\frac {2 a (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{7 d}+\frac {2 (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 d} \]

output
2/7*a*(a+a*sec(d*x+c))^(3/2)*tan(d*x+c)/d+2/7*(a+a*sec(d*x+c))^(5/2)*tan(d 
*x+c)/d+64/21*a^3*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+16/21*a^2*(a+a*sec(d 
*x+c))^(1/2)*tan(d*x+c)/d
 
3.2.9.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.52 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 a^3 \left (46+23 \sec (c+d x)+12 \sec ^2(c+d x)+3 \sec ^3(c+d x)\right ) \tan (c+d x)}{21 d \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^(5/2),x]
 
output
(2*a^3*(46 + 23*Sec[c + d*x] + 12*Sec[c + d*x]^2 + 3*Sec[c + d*x]^3)*Tan[c 
 + d*x])/(21*d*Sqrt[a*(1 + Sec[c + d*x])])
 
3.2.9.3 Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.08, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 4285, 3042, 4280, 3042, 4280, 3042, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) (a \sec (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}dx\)

\(\Big \downarrow \) 4285

\(\displaystyle \frac {5}{7} \int \sec (c+d x) (\sec (c+d x) a+a)^{5/2}dx+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{7} \int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}dx+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d}\)

\(\Big \downarrow \) 4280

\(\displaystyle \frac {5}{7} \left (\frac {8}{5} a \int \sec (c+d x) (\sec (c+d x) a+a)^{3/2}dx+\frac {2 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}\right )+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{7} \left (\frac {8}{5} a \int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}dx+\frac {2 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}\right )+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d}\)

\(\Big \downarrow \) 4280

\(\displaystyle \frac {5}{7} \left (\frac {8}{5} a \left (\frac {4}{3} a \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {2 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )+\frac {2 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}\right )+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{7} \left (\frac {8}{5} a \left (\frac {4}{3} a \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )+\frac {2 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}\right )+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {5}{7} \left (\frac {8}{5} a \left (\frac {8 a^2 \tan (c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )+\frac {2 a \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}\right )+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d}\)

input
Int[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^(5/2),x]
 
output
(2*(a + a*Sec[c + d*x])^(5/2)*Tan[c + d*x])/(7*d) + (5*((2*a*(a + a*Sec[c 
+ d*x])^(3/2)*Tan[c + d*x])/(5*d) + (8*a*((8*a^2*Tan[c + d*x])/(3*d*Sqrt[a 
 + a*Sec[c + d*x]]) + (2*a*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d)))/ 
5))/7
 

3.2.9.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4280
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_ 
Symbol] :> Simp[(-b)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] 
+ Simp[a*((2*m - 1)/m)   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x], 
 x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && Intege 
rQ[2*m]
 

rule 4285
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), 
x_Symbol] :> Simp[(-Cot[e + f*x])*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] 
+ Simp[a*(m/(b*(m + 1)))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] 
/; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]
 
3.2.9.4 Maple [A] (verified)

Time = 5.28 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.65

method result size
default \(\frac {2 a^{2} \left (46 \cos \left (d x +c \right )^{3}+23 \cos \left (d x +c \right )^{2}+12 \cos \left (d x +c \right )+3\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{21 d \left (\cos \left (d x +c \right )+1\right )}\) \(75\)

input
int(sec(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
2/21/d*a^2*(46*cos(d*x+c)^3+23*cos(d*x+c)^2+12*cos(d*x+c)+3)*(a*(1+sec(d*x 
+c)))^(1/2)/(cos(d*x+c)+1)*tan(d*x+c)*sec(d*x+c)^2
 
3.2.9.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.82 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 \, {\left (46 \, a^{2} \cos \left (d x + c\right )^{3} + 23 \, a^{2} \cos \left (d x + c\right )^{2} + 12 \, a^{2} \cos \left (d x + c\right ) + 3 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{21 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

input
integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
2/21*(46*a^2*cos(d*x + c)^3 + 23*a^2*cos(d*x + c)^2 + 12*a^2*cos(d*x + c) 
+ 3*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + 
 c)^4 + d*cos(d*x + c)^3)
 
3.2.9.6 Sympy [F]

\[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int \left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}} \sec ^{2}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**2*(a+a*sec(d*x+c))**(5/2),x)
 
output
Integral((a*(sec(c + d*x) + 1))**(5/2)*sec(c + d*x)**2, x)
 
3.2.9.7 Maxima [F]

\[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
4/21*(21*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1 
)^(3/4)*((a^2*d*cos(2*d*x + 2*c)^2 + a^2*d*sin(2*d*x + 2*c)^2 + 2*a^2*d*co 
s(2*d*x + 2*c) + a^2*d)*integrate((((cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2 
*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c) 
*sin(2*d*x + 2*c) + 2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c) 
^2)*cos(7/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2* 
c)*sin(6*d*x + 6*c) + 2*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(6*d*x + 6* 
c)*sin(2*d*x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(7/2*arctan2 
(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(5/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2*cos(2*d*x 
+ 2*c)*sin(4*d*x + 4*c) - cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 2*cos(4*d*x 
+ 4*c)*sin(2*d*x + 2*c))*cos(7/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c 
))) - (cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 4*c)*cos(2*d*x + 
2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 2*sin(4*d* 
x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(7/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c))))*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
2*c) + 1)))/(((cos(2*d*x + 2*c)^4 + sin(2*d*x + 2*c)^4 + (cos(2*d*x + 2*c) 
^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*cos(6*d*x + 6*c)^2 + 4*( 
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*cos(4*d* 
x + 4*c)^2 + 2*cos(2*d*x + 2*c)^3 + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2...
 
3.2.9.8 Giac [F]

\[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
sage0*x
 
3.2.9.9 Mupad [B] (verification not implemented)

Time = 17.26 (sec) , antiderivative size = 349, normalized size of antiderivative = 3.01 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (\frac {a^2\,20{}\mathrm {i}}{3\,d}-\frac {a^2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,4{}\mathrm {i}}{21\,d}\right )}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}-\frac {\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (\frac {a^2\,16{}\mathrm {i}}{7\,d}+\frac {a^2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,16{}\mathrm {i}}{7\,d}\right )}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^3}-\frac {a^2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,92{}\mathrm {i}}{21\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )}+\frac {a^2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,48{}\mathrm {i}}{7\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^2} \]

input
int((a + a/cos(c + d*x))^(5/2)/cos(c + d*x)^2,x)
 
output
((a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*((a^2*20i)/ 
(3*d) - (a^2*exp(c*1i + d*x*1i)*4i)/(21*d)))/((exp(c*1i + d*x*1i) + 1)*(ex 
p(c*2i + d*x*2i) + 1)) - ((a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x* 
1i)/2))^(1/2)*((a^2*16i)/(7*d) + (a^2*exp(c*1i + d*x*1i)*16i)/(7*d)))/((ex 
p(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)^3) - (a^2*exp(c*1i + d*x*1i 
)*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*92i)/(21*d 
*(exp(c*1i + d*x*1i) + 1)) + (a^2*exp(c*1i + d*x*1i)*(a + a/(exp(- c*1i - 
d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*48i)/(7*d*(exp(c*1i + d*x*1i) + 1 
)*(exp(c*2i + d*x*2i) + 1)^2)